5,004 research outputs found

    Spin-Polarization Response Functions in High-Energy (e,e'p) Reactions

    Get PDF
    Spin-polarization response functions are examined for high-energy (e,ep)(\vec{e},e'\vec{p}) reaction by computing the full 18 response functions for the proton kinetic energy Tp=T_{p'}= 0.515 GeV and 3.179 GeV with an 16O target. The Dirac eikonal formalism is applied to account for the final-state interactions. The formalism is found to yield the response functions in good agreement with those calculated by the partial-wave expansion method at 0.515 GeV. We identify the response functions that depend on the spin-orbital potential in the final-state interactions, but not on the central potential. Dependence on the Dirac- or Pauli-type current of the nucleon is investigated in the helicity-dependent response functions, and the normal-component polarization of the knocked-out proton, PnP_n, is computed.Comment: 22 pages, Latex, figures available at ftp://ftp.krl.caltech.edu/pub/users/rseki/it

    Self-energy and Fermi surface of the 2-dimensional Hubbard model

    Full text link
    We present an exact diagonalization study of the self-energy of the two-dimensional Hubbard model. To increase the range of available cluster sizes we use a corrected t-J model to compute approximate Greens functions for the Hubbard model. This allows to obtain spectra for clusters with 18 and 20 sites. The self-energy has several `bands' of poles with strong dispersion and extended incoherent continua with k-dependent intensity. We fit the self-energy by a minimal model and use this to extrapolate the cluster results to the infinite lattice. The resulting Fermi surface shows a transition from hole pockets in the underdoped regime to a large Fermi surface in the overdoped regime. We demonstrate that hole pockets can be completely consistent with the Luttinger theorem. Introduction of next-nearest neighbor hopping changes the self-energy stronlgy and the spectral function with nonvanishing next-nearest-neighbor hopping in the underdoped region is in good agreement with angle resolved photoelectron spectroscopy.Comment: 17 pages, 18 figure

    Nuclear Matter on a Lattice

    Get PDF
    We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin- and isospin-exchange interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. We compare symmetry energy and first sound velocities with literature and find reasonable agreement.Comment: 23 pages, 8 figures (some in color), to be submitted to Phys. Rev.

    Spin-Hall and Anisotropic Magnetoresistance in Ferrimagnetic Co-Gd / Pt layers

    Get PDF
    We present the Co-Gd composition dependence of the spin-Hall magnetoresistance (SMR) and anisotropic magnetoresistance (AMR) for ferrimagnetic Co100-xGdx / Pt bilayers. With Gd concentration x, its magnetic moment increasingly competes with the Co moment in the net magnetization. We find a nearly compensated ferrimagnetic state at x = 24. The AMR changes sign from positive to negative with increasing x, vanishing near the magnetization compensation. On the other hand, the SMR does not vary significantly even where the AMR vanishes. These experimental results indicate that very different scattering mechanisms are responsible for AMR and SMR. We discuss a possible origin for the alloy composition dependence.Comment: 31 Pages, 9 figure

    On the determination of the pion effective mass in nuclei from pionic atoms

    Full text link
    The binding energies of the deeply bound 1s and 2p states in pionic atoms of 207^{207}Pb, recently established experimentally in the 208^{208}Pb(d,3^3He) reaction, have been used by several groups to derive the pion effective mass in nuclear matter. We show that these binding energies are fully consistent with `normal' pionic atoms and that the real part of the pion-nucleus potential at the center of 207^{207}Pb is 28±\pm3 MeV and not 20 MeV as suggested previously.Comment: 8 pages, Revtex, 2 figures, accepted by Physics Letters

    Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film

    Full text link
    Using dissipative particle dynamics simulations, we study the effects of an embedding bulk fluid on the phase separation dynamics in a thin planar liquid film. The domain growth exponent is altered from 2D to 3D behavior upon the addition of a bulk fluid, even though the phase separation occurs in 2D geometry. Correlated diffusion measurements in the film show that the presence of bulk fluid changes the nature of the longitudinal coupling diffusion coefficient from logarithmic to algebraic dependence of 1/s, where s is the distance between the two particles. This result, along with the scaling exponents, suggests that the phase separation takes place through the Brownian coagulation process.Comment: 6 pages, 5 figures. Accepted for publication in Europhys. Let

    Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    Full text link
    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A xxx, {\bf xx}, 2005], are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres. Therefore, the far-field contributions must be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.Comment: submitted to Physics of Fluid

    Chiral Condensate in Holographic QCD with Baryon Density

    Full text link
    We consider the chiral condensate in the baryonic dense medium using the generalized Sakai-Sugimoto model. It is defined as the vacuum expectation value of open Wilson line that is proposed to be calculated by use of the area of world-sheet instanton. We evaluate it in confined as well as deconfined phase. In both phases, the chiral condensate has a minimum as a function of baryon density. In the deconfined phase, taking into account the chiral symmetry restoration, we classify the behavior of chiral condensate into three types. One can set the parameter of the theory such that the results, in low but sufficiently higher density, is in agreement with the expectation from QCD.Comment: 23 pages, 8 figure

    Electronic structure, magnetic and dielectric properties of the edge-sharing copper-oxide chain compound NaCu2_{2}O2_{2}

    Full text link
    We report an experimental study of \nco, a Mott insulator containing chains of edge-sharing CuO4_4 plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric current measurements. The XAS data show that the valence holes reside exclusively on the Cu2+^{2+} sites within the copper-oxide spin chains and populate a dd-orbital polarized within the CuO4_4 plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a N\'eel temperature of TN=11.5T_N = 11.5 K, which was previously inferred from neutron powder diffraction and nuclear magnetic resonance data. In conjunction with the magnetic susceptibility and XAS data, they also demonstrate a new "orbital" selection rule for RMXS that is of general relevance for magnetic structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below TNT_N, which is in striking contrast to corresponding observations on the isostructural compound \lco. The results are discussed in the context of current theories of multiferroicity.Comment: 7 pages, 7 figure
    corecore